CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons.

نویسندگان

  • Bimmi Shrestha
  • Amelia K Pinto
  • Sharone Green
  • Irene Bosch
  • Michael S Diamond
چکیده

Previous studies of mice have demonstrated that an orchestrated sequence of innate and adaptive immune responses is required to control West Nile virus (WNV) infection in peripheral and central nervous system (CNS) tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; also known as CD253) has been reported to inhibit infection with dengue virus, a closely related flavivirus, in cell culture. To determine the physiological function of TRAIL in the context of flavivirus infection, we compared the pathogenesis of WNV in wild-type and TRAIL(-/-) mice. Mice lacking TRAIL showed increased vulnerability and death after subcutaneous WNV infection. Although no difference in viral burden was detected in peripheral tissues, greater viral infection was detected in the brain and spinal cord at late times after infection, and this was associated with delayed viral clearance in the few surviving TRAIL(-/-) mice. While priming of adaptive B and T cell responses and trafficking of immune and antigen-specific cells to the brain were undistinguishable from those in normal mice, in TRAIL(-/-) mice, CD8(+) T cells showed qualitative defects in the ability to clear WNV infection. Adoptive transfer of WNV-primed wild-type but not TRAIL(-/-) CD8(+) T cells to recipient CD8(-/-) mice efficiently limited infection in the brain and spinal cord, and analogous results were obtained when wild-type or TRAIL(-/-) CD8(+) T cells were added to WNV-infected primary cortical neuron cultures ex vivo. Collectively, our results suggest that TRAIL produced by CD8(+) T cells contributes to disease resolution by helping to clear WNV infection from neurons in the central nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD8+ T cells require perforin to clear West Nile virus from infected neurons.

Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by trigger...

متن کامل

Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system.

Many viruses induce type I interferon responses by activating cytoplasmic RNA sensors, including the RIG-I-like receptors (RLRs). Although two members of the RLR family, RIG-I and MDA5, have been implicated in host control of virus infection, the relative role of each RLR in restricting pathogenesis in vivo remains unclear. Recent studies have demonstrated that MAVS, the adaptor central to RLR ...

متن کامل

CD8 and CD4 T Cells in West Nile Virus Immunity and Pathogenesis

CD4 and CD8 T lymphocytes are adaptive immune cells that play a key role in the immune response to pathogens. They have been extensively studied in a variety of model systems and the mechanisms by which they function are well described. However, the responses by these cell types vary widely from pathogen to pathogen. In this review, we will discuss the role of CD8 and CD4 T cells in the immune ...

متن کامل

The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.

UNLABELLED The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West...

متن کامل

Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis.

West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that has become a significant global cause of viral encephalitis. To examine the mechanisms of WNV-induced neuronal death and the importance of apoptosis in pathogenesis, we evaluated the role of a key apoptotic regulator, caspase 3. WNV infection induced caspase 3 activation and apoptosis in the brains of wild-type mice. Notabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 86 17  شماره 

صفحات  -

تاریخ انتشار 2012